Below the transcript of what it appears to be a forged version of Wikipedia page about the grand canyon. For questions contact tonysalinasis@gmail.com
Geology of the Grand Canyon area
Wide canyon with exposed red- and tan-colored rock
The Grand Canyon from Navajo Point. The Colorado River is to the right and the North Rim is visible at left in the distance. The view shows nearly every sedimentary layer described in this article.
The geology of the Grand Canyon area exposes one of the most complete and studied sequences of rock on Earth. The nearly 40 major sedimentary rock layers exposed in the Grand Canyon and in the Grand Canyon National Park area range in age from about 200 million to nearly 2 billion years old. Most were deposited in warm, shallow seas and near ancient, long-gone sea shores in western North America. Both marine and terrestrial sediments are represented, including fossilized sand dunes from an extinct desert. There are at least 14 known unconformities in the geologic record found in the Grand Canyon area.
Uplift of the region started about 75 million years ago during the Laramide orogeny; a mountain-building event that is largely responsible for creating the Rocky Mountains to the east. In total the Colorado Plateau was uplifted an estimated 2 miles (3.2 km). The adjacent Basin and Range province to the west started to form about 18 million years ago as the result of crustal stretching. A drainage system that flowed through what is today the eastern Grand Canyon emptied into the now lower Basin and Range province. Opening of the Gulf of California around 6 million years ago enabled a large river to cut its way northeast from the gulf. The new river captured the older drainage to form the ancestral Colorado River, which in turn started to form the Grand Canyon.
Wetter climates brought upon by ice ages starting 2 million years ago greatly increased excavation of the Grand Canyon, which was nearly as deep as it is now by 1.2 million years ago. Volcanic activity deposited lava over the area 1.8 million to 500,000 years ago. At least 13 lava dams blocked the Colorado River, forming lakes that were up to 2,000 feet (610 m) deep. The end of the last ice age and subsequent human activity has greatly reduced the ability of the Colorado River to excavate the canyon. Dams in particular have upset patterns of sediment transport and deposition. Controlled floods from Glen Canyon Dam upstream have been conducted to see if they have a restorative effect. Earthquakes and mass wasting erosive events still affect the region.
An exhibit with different rock layers cut out from a canyon wall
Figure 1. A geologic cross section of the Grand Canyon. Black numbers correspond to subsection numbers in section 1 and white numbers are referred to in the text
Contents
[hide]
1 Deposition of sediments
1.1 Metamorphic and igneous basement
1.2 Grand Canyon Supergroup
1.3 Tonto Group
1.4 Temple Butte, Redwall, and Surprise Canyon
1.5 Supai Group
1.6 Hermit, Coconino, Toroweap, and Kaibab
1.7 Mesozoic deposition
2 Creation of the canyon
2.1 Uplift and nearby extension
2.2 Colorado River's birth and its cutting down
2.3 Volcanic activity dams the new canyon
3 Ongoing geology and human impact
4 Notes and timeline
5 References
6 Bibliography
7 External links
[edit] Deposition of sediments
A stout pillar of motored irregular-shaped stone with insets of stacked more brick-shaped rock forming a column slanting to the right. A plaque on the pillar reads: "Grand Canyon Strata, Courtesy of Grand Canyon National Park".
Stones from each of the strata in an exhibit in Heritage Square in Flagstaff
[edit] Metamorphic and igneous basement
The Granite Gorge Metamorphic Suite consists of the metasedimentary Vishnu Schist and the metavolcanic Brahma and Rama Schists. All were formed 1.75 billion to 1.73 billion years ago[1] in Precambrian time when thousands of feet of volcanic ash, mud, sand, and silt were laid down in a shallow backarc basin similar to the modern Sea of Japan.[2] The basin was between an early form of North America called Laurentia and an orogenic belt of mountains and volcanoes in an island arc similar to modern Japan.
Gray and reddish rock face with rough surface adjacent to a river.
The Vishnu basement was deposited as sediments but were later metamorphosed and intruded by igneous rock.
From 1.8 to 1.6 billion years ago at least two island arcs collided with the proto-North American continent.[3] This process of plate tectonics compressed and grafted these marine sediments onto Laurentia and uplifted them out of the sea. Later, these rocks were buried 12 miles (19 km) under the surface and pressure-cooked into metamorphic rock.[4] This is the resistant rock now exposed at the bottom of the canyon in the Inner Gorge. No identifiable fossils have been found in the Suite, but lenses of marble now seen in these units were likely derived from colonies of primitive algae.[3]
As the volcanic islands collided with the mainland around 1.7 billion years ago, blobs of magma rose from the subduction zone and intruded the Granite Gorge Metamorphic Suite.[5] These plutons slowly cooled to form the Zoroaster Granite; part of which would later be metamorphosed into gneiss. This rock unit can be seen as light-colored bands in the darker garnet-studded Vishnu Schist (see 1b in Figure 1). The intrusion of the granite occurred in three phases: two during the initial Vishnu metamorphism period, and a third around 1.4 billion years ago.[6] The third phase was accompanied by large-scale faulting, particularly along north—south faults, leading to a partial rifting of the continent.[4] The collision expanded the continent from the Wyoming–Colorado border into Mexico and almost doubled the crust's thickness in the Grand Canyon region.[5] Part of this thickening created the 5-to-6-mile (8 to 10 km) high ancestral Mazatzal Mountains.[7]
Subsequent erosion lasting 300 million years stripped much of the exposed sediments and the mountains away.[8] This reduced the very high mountains to small hills a few tens to hundreds of feet (tens of meters) high.[3] Geologist John Wesley Powell called this major gap in the geologic record, which is also seen in other parts of the world, the Great Unconformity.[8] Other sediments may have been added but, if they ever existed, were completely removed by erosion. Such gaps in the geologic record are called unconformities by geologists. The Great Unconformity is one of the best examples of an exposed nonconformity, which is a type of unconformity that has bedded rock units above igneous or metamorphic rocks.[9]
[edit] Grand Canyon Supergroup
In late Precambrian time, extension from a large tectonic plate or smaller plates moving away from Laurentia thinned its continental crust, forming large rift basins that would ultimately fail to split the continent.[5] Eventually, this sunken region of Laurentia was flooded with a shallow seaway that extended from at least present-day Lake Superior to Glacier National Park in Montana to the Grand Canyon and the Uinta Mountains.[3] The resulting Grand Canyon Supergroup of sedimentary units is composed of nine varied geologic formations that were laid down from 1.2 billion and 740 million years ago in this sea.[10] Good exposures of the supergroup can be seen in eastern Grand Canyon in the Inner Gorge and from Desert View, Lipan Point and Moran point.[11][note 1]
Layered dark brown rock in stairstep pattern in ledges above a river in a canyon with exposed reddish and tan rock
The Cardenas Lava was laid on top of the rest of the Grand Canyon Supergroup
The oldest section of the supergroup is the Unkar Group. It was laid down in an offshore environment. The first formation to be laid down in the Unkar Group was the Bass Limestone. A wave-eroded gravel that later lithified into a basal conglomerate is known as the Hotauta Member of the Bass Limestone.[12] The Bass Limestone was deposited in a shallow sea near the coast as a mix of limestone, sandstone, and shale. It is 120 to 340 feet (37 to 100 m) thick and grayish in color.[9] Averaging 1250 million years old, this is the oldest layer exposed in the Grand Canyon that contains fossils—stromatolites.[11] Hakatai Shale is made of thin beds of marginal-marine-derived mudstones, sandstones, and shale that, together, are 445 to 985 feet (136 to 300 m) thick.[13] This formation indicates a short-lived regression (retreat) of the seashore in the area that left mud flats.[9] Today it is very bright orange-red and gives the Red Canyon its name. Shinumo Quartzite was a resistant marine sandstone that later formed islands in Cambrian time. Those islands withstood wave action long enough to become re-buried by other sediments in the Cambrian Period.[9] It was later metamorphosed into quartzite. Dox Sandstone is over 3,000 feet (910 m) thick and is made of ocean-derived sandstone with some interbedded shale beds and mudstone.[14] Ripple marks and other features indicate it was close to the shore. Outcrops of this red to orange formation can be seen in the eastern parts of the canyon. Fossils of stromatolites and algae are found in this layer. At 1070 ± 70 million years old, the Cardenas Lava is the youngest formation in the Unkar Group.[15] It is made of layers of dark brown basaltic rocks that flowed as lava up to 1,000 feet (300 m) thick.[9]
Nankoweap Formation is around 1050 million years old and is not part of a group.[16] This rock unit is made of coarse-grained sandstone, and was deposited in a shallow sea on top of the eroded surface of the Cardenas Lava.[9] The Nankoweap is only exposed in the eastern part of the canyon. A gap in the geologic record, an unconformity, follows the Nankoweap.
A ledge made of pebbly rock with lichen on it.
Sixtymile Formation is the last rock unit in the Chuar Group
All formations in the Chuar Group were deposited in coastal and shallow sea environments about 1000 to 700 million years ago.[17] Galeros Formation is a mainly greenish formation composed of interbedded sandstone, limestone, and shale with some shale. It ranges in color from red to purple. Fossilized stromatolites are found in the Galeros.[18] Kwagunt Formation consists of black shale and red to purple mudstone with some limestone.[19] Isolated pockets of reddish sandstone are also found around Carbon Butte. Stromatolites are found in this layer.[20] Sixtymile Formation is made of tan-colored sandstone with some small sections of shale.
About 800 million years ago the supergroup was tilted 15° and block faulted in the Grand Canyon Orogeny.[21][22] Some of the block units moved down and others moved up while fault movement created north—south-trending fault-block mountain ranges.[9] About 100 million years of erosion took place that washed most of the Chuar Group away along with part of the Unkar Group (exposing the Shinumo Quartzite as previously explained). The mountain ranges were reduced to hills, and in some places, the whole 12,000 feet (3,700 m) of the supergroup were removed entirely, exposing the basement rocks below.[5] Any rocks that were deposited on top of the Grand Canyon Supergroup in the Precambrian were completely removed. This created a major unconformity that represents 460 million years of lost geologic history in the area.[23]
[edit] Tonto Group
During the Paleozoic era, the western part of what would become North America was near the equator and on a passive margin.[23] The Cambrian Explosion of life took place over about 15 million years in this part of the world.[24] Climate was warm and invertebrates, such as the trilobites, were abundant.[25] An ocean started to return to the Grand Canyon area from the west about 550 million years ago.[9] As its shoreline moved east, the ocean began to concurrently deposit the three formations of the Tonto Group.
Wide canyon with steep tan colored walls. A river inside a valley is below a broad gently sloping surface.
Tonto Group is most easily seen as the broad Tonto Platform just above the Colorado River
Tapeats Sandstone averages 525 million years old and is made of cliff-derived medium- to coarse-grained sand and conglomerate that was deposited on an ancient shore (see 3a in figure 1).[10] Ripple marks are common in the upper members of this dark brown thin-bedded layer. Fossils and imprint trails of trilobites and brachiopods have also been found in the Tapeats. Today it is a cliff-former that is 100 to 325 feet (30 to 100 m) thick.[26] Bright Angel Shale averages 515 million years old and is made of mudstone-derived shale that is interbeded with small sections of sandstone and shaly limestone with a few thin beds of dolomite.[10] It was mostly deposited as mud just offshore and contains brachiopod, trilobite, and worm fossils (see 3b in figure 1). The color of this formation is mostly various shades of green with some brownish-tan to gray parts. It is a slope-former and is 270 to 450 feet (82 to 140 m) thick.[27] Glauconite is responsible for the green coloration of the Bright Angel.[28] Muav Limestone averages 505 million years old and is made of gray, thin-bedded limestone that was deposited farther offshore from calcium carbonate precipitates (see 3c in figure 1).[10] It is fossil poor yet trilobites and brachiopods have been found in it. The western part of the canyon has a much thicker sequence of Muav than the eastern part.[29] The Muav is a cliff-former, 136 to 827 feet (41 to 252 m) thick.[30]
These three formations were laid down over a period of 30 million years from early-to-middle Cambrian time.[31] Trilobites followed by brachiopods are the most commonly reported fossils in this group but well-preserved fossils are relatively rare.[30] We know that the shoreline was transgressing (advancing onto land) because finer grade material was deposited on top of coarser-grained sediment.[31] Today, the Tonto Group makes up the Tonto Platform seen above and following the Colorado River; the Tapeats Sandstone and Muav Limestone form the platform's cliffs and the Bright Angel Shale forms its slopes.[31] Unlike the Proterozoic units below it, the Tonto Group's beds basically lie in their original horizontal position. The Bright Angel Shale in the group forms an aquiclude (barrier to groundwater seeping down), and thus collects and directs water through the overlying Muav Limestone to feed springs in the Inner Gorge.
[edit] Temple Butte, Redwall, and Surprise Canyon
The next two periods of geologic history, the Ordovician and the Silurian, are missing from the Grand Canyon sequence.[25] Geologists do not know if sediments were deposited in these periods and were later removed by erosion or if they were never deposited in the first place.[31] Either way, this break in the geologic history of the area spans about 165 million years. A type of unconformity called a disconformity was formed.[32] Disconformities show erosional features such as valleys, hills and cliffs that are later covered by younger sediments.
Annotated photo of different colored rock units on a cliff.
Temple Butte Limestone was deposited on the eroded surface of the Muav Limestone. It in turn was buried by Redwall Limestone
Geologists do know that deep channels were carved on the top of the Muav Limestone during this time.[31][32] Streams were the likely cause but marine scour may be to blame. Either way, these depressions were filled with freshwater limestone about 385 million years ago in the Middle Devonian in a formation that geologists call the Temple Butte Limestone (see 4a in figure 1).[10] Marble Canyon in the eastern part of the park displays these filled purplish-colored channels well.[31] Temple Butte Limestone is a cliff-former in the western part of the park where it is gray to cream-colored dolomite. Fossils of animals with backbones are found in this formation; bony plates from freshwater fish in the eastern part and numerous marine fish fossils in the western part. Temple Butte is 100 to 450 feet (30 to 140 m) thick; thinner near Grand Canyon Village and thicker in western Grand Canyon.[33] An unconformity representing 40 to 50 million years of lost geologic history marks the top of this formation.[34]
The next formation in the Grand Canyon geologic column is the cliff-forming Redwall Limestone, which is 400 to 800 feet (120 to 240 m) thick (see 4b in figure 1).[35] Redwall is composed of thick-bedded, dark brown to bluish gray limestone and dolomite with white chert nodules mixed in.[31] It was laid down in a retreating shallow tropical sea near the equator during 40 million years of the early-to-middle Mississippian.[36] Many fossilized crinoids, brachiopods, bryozoans, horn corals, nautiloids, and sponges, along with other marine organisms such as large and complex trilobites have been found in the Redwall.[31] In late Mississippian time, the Grand Canyon region was slowly uplifted and the Redwall was partly eroded away. A Karst topography consisting of caves, sinkholes, and subterrainian river channels resulted but were later filled with more limestone.[8] The exposed surface of Redwall gets its characteristic color from rainwater dripping from the iron-rich redbeds of the Supai and Hermit shale that lie above.[31]
Surprise Canyon Formation is a sedimentary layer of purplish-red shale that was laid down in discontinuous beds of sand and lime above the Redwall (see 4c in figure 1). It was created in very late Mississippian and possibly in very earliest Pennsylvanian time as the land subsided and tidal estuaries filled river valleys with sediment.[31] This formation only exists in isolated lenses that are 50 to 400 feet (15 to 120 m) thick.[37] Surprise Canyon was unknown to science until 1973 and can only be reached by helicopter.[36] Fossil logs, other plant material and marine shells are found in this formation.[31] An unconformity marks the top of the Surprise Canyon Formation and in most places this unconformity has entirely removed the Surprise Canyon and exposed the underlying Redwall.
[edit] Supai Group
Tan- to cream-colored layer cliff face above water
Supai Group with a stranded log from a pre-Glen Canyon Dam flood
An unconformity of 15 to 20 million years separates the Supai Group from the previously deposited Redwall Formation.[36] Supai Group was deposited in late Mississippian, through the Pennsylvanian and into the early Permian time, some 320 million to 270 million years ago.[38] Both marine and non-marine deposits of mud, silt, sand and calcareous sediments were laid down on a broad coastal plain similar to the Texas Gulf Coast of today.[38] Around this time, the Ancestral Rocky Mountains rose in Colorado and New Mexico and streams brought eroded sediment from them to the Grand Canyon area.[39]
Supai Group formations in the western part of the canyon contain limestone, indicative of a warm, shallow sea, while the eastern part was likely a muddy river delta. This formation consists of red siltstones and shale capped by tan-colored sandstone beds that together reach a thickness of 600 to 700 feet (200 to 200 m).[31] Shale in the early Permian formations in this group were oxidized to a bright red color. Fossils of amphibian footprints, reptiles, and plentiful plant material are found in the eastern part and increasing numbers of marine fossils are found in the western part.[40]
Formations of the Supai Group are from oldest to youngest (an unconformity is present at the top of each): Watahomigi (see 5a in figure 1) is a slope-forming gray limestone with some red chert bands, sandstone, and purple siltstone that is 100 to 300 feet (30 to 90 m) thick.[41] Manakacha (see 5b in figure 1) is a cliff- and slope-forming pale red sandstone and red shale that averages 300 feet (90 m) thick in Grand Canyon.[42] Wescogame (see 5c in figure 1) is a ledge- and slope-forming pale red sandstone and siltstone that is 100 to 200 feet (30 to 60 m) thick.[43] Esplanade (see 5d in figure 1) is a ledge- and cliff-forming pale red sandstone and siltstone that is 200 to 800 feet (60 to 200 m) thick.[44] An unconformity marks the top of the Supai Group.
[edit] Hermit, Coconino, Toroweap, and Kaibab
Like the Supai Group below it, the Permian-aged Hermit Shale was likely deposited on a broad coastal plain (see 6a in figure 1).[38] The alternating thin-bedded iron oxide, mud and silt were deposited via freshwater streams in a semiarid environment around 280 million years ago.[10] Fossils of winged insects, cone-bearing plants, and ferns are found in this formation as well as tracks of vertebrate animals.[32] It is a soft, deep red shale and mudstone slope-former that is approximately 100 to 900 feet (30 to 270 m) thick.[45] Slope development will periodically undermine the formations above and car- to house-sized blocks of that rock will cascade down onto the Tonto Platform. An unconformity marks the top of this formation .
Indentations of roundish footprints with claw or toe marks in tan-colored rock
Lizard-like animals left their footprints in Coconino Sandstone
Coconino Sandstone formed about 275 million years ago as the area dried out and sand dunes made of quartz sand invaded a growing desert (see 6b in figure 1).[10] Some Coconino fills deep mudcracks in the underlying Hermit Shale[38] and the desert that created the Coconino lasted for 5 to 10 million years.[46] Today, the Coconino is a 57 to 600 feet (17 to 180 m) thick golden white to cream-colored cliff-former near the canyon's rim.[47] Eolian (wind-created) cross bedding patterns of the frosted, well-sorted and rounded sand can be seen in its fossilized sand dunes.[32] Also fossilized are tracks from lizard-like creatures and what look like tracks from millipedes and scorpions.[48] An unconformity marks the top of this formation.
Dark mass in bluish gray rock with shells in it.
Fossils, such as this brachiopod and fragments of crinoids, are common in the Toroweap and Kaibab formations
Next in the geologic column is the 200-foot (60 m)-thick Toroweap Formation (see 6c in figure 1).[40] It consists of red and yellow sandstone and shaly gray limestone interbedded with gypsum.[40] The formation was deposited in a warm, shallow sea as the shoreline transgressed (invaded) and regressed (retreated) over the land.[40] The average age of the rock is about 273 million years.[10] In modern times it is a ledge- and cliff-former that contains fossils of brachiopods, corals, and mollusks along with other animals and various terrestrial plants.[40] The Toroweap is divided into the following three members:[49] Seligman is a slope-forming yellowish to reddish sandstone and siltstone. Brady Canyon is a cliff-forming gray limestone with some chert. Wood Ranch is a slope-forming pale red and gray siltstone and dolomitic sandstone. An unconformity marks the top of this formation.
One of the highest, and therefore youngest, formations seen in the Grand Canyon area is the Kaibab Limestone (see 6d in figure 1). It erodes into ledgy cliffs that are 300 to 400 feet (90 to 100 m) thick[50] and was laid down in latest early Permian time, about 270 million years ago.[10] Kaibab was deposited in the deeper parts of the same advancing warm, shallow sea where the underlying Toroweap was formed. The formation is typically made of sandy limestone sitting on top of a layer of sandstone, but in some places sandstone and shale are near or at the top.[29] This is the cream to grayish-white rock that park visitors stand on while viewing the canyon from both rims. It is also the surface rock covering much of the Kaibab Plateau just north of the canyon and the Coconino Plateau immediately south. Shark teeth have been found in this formation as well abundant fossils of marine invertebrates such as brachiopods, corals, mollusks, sea lilies, and worms. An unconformity marks the top of this formation.
[edit] Mesozoic deposition
A large mound of rock and dirt with reddish and grayish soil and mostly covered with vegetation.
Reddish Moenkopi outcrop below volcanic rubble on Red Butte
Uplift marked the start of the Mesozoic and streams started to incise the newly dry land. Streams flowing through broad low valleys in Triassic time deposited sediment eroded from nearby uplands, creating the once 1,000-foot (300 m)-thick Moenkopi Formation.[51] The formation is made from sandstone and shale with gypsum layers in between.[52] Moenkopi outcrops are found along the Colorado River in Marble Canyon, on Cedar Mountain (a mesa near the southeastern park border), and in Red Butte (located south of Grand Canyon Village).[51] Remnants of the Shinarump Conglomerate, itself a member of the Chinle Formation, are above the Moenkopi Formation near the top of Red Butte but below a much younger lava flow.[53]
Formations totaling over 4,000 to 5,000 feet (1,200 to 1,500 m) in thickness were deposited in the region in the Mesozoic and Cenozoic but were almost entirely removed from the Grand Canyon sequence by subsequent erosion.[54] The geology of the Zion and Kolob canyons area and the geology of the Bryce Canyon area records some of these formations. All these rock units together form a super sequence of rock known as the Grand Staircase.
[edit] Creation of the canyon
[edit] Uplift and nearby extension
Relief map of the roughly oval shape of the Colorado Plateau surrounding the point where the U.S. States of Utah, Colorado, New Mexico and Arizona meet.
Uplift of the Colorado Plateaus forced rivers to cut down faster.
The Laramide orogeny affected all of western North America by helping to build the American cordillera. The Kaibab Uplift, Monument Upwarp, the Uinta Mountains, San Rafael Swell, and the Rocky Mountains were uplifted, at least in part, by the Laramide orogeny.[55] This major mountain-building event started near the end of the Mesozoic, around 75 million years ago,[51] and continued into the Eocene period of the Cenozoic.[55] It was caused by subduction off the western coast of North America. Major faults that trend north–south and cross the canyon area were reactivated by this uplift.[48] Many of these faults are Precambrian in age and are still active today.[56] Streams draining the Rocky Mountains in early Miocene time terminated in landlocked basins in Utah, Arizona and Nevada but there is no evidence for a major river.[57]
Around 18 million years ago, tensional forces started to thin and drop the region to the west, creating the Basin and Range province.[57] Basins (grabens) dropped down and mountain ranges (horsts) rose up between old and new north–south–trending faults. However, for reasons poorly understood, the beds of the Colorado Plateaus remained mostly horizontal through both events even as they were uplifted about 2 miles (3.2 km) in two pulses.[58][note 2] The extreme western part of the canyon ends at one of the Basin and Range faults, the Grand Wash, which also marks the boundary between the two provinces.[40]
Uplift from the Laramide orogeny and the creation of the Basin and Range province worked together to steepen the gradient of streams flowing west on the Colorado Plateau. These streams cut deep, eastward-growing, channels into the western edge of the Colorado Plateau and deposited their sediment in the widening Basin and Range region.[57]
[edit] Colorado River's birth and its cutting down
Rifting started to create the Gulf of California far to the south 6 to 10 million years ago.[57] Around the same time, the western edge of the Colorado Plateau may have sagged slightly.[57] Both events changed the direction of many streams toward the sagging region and the increased gradient caused them to downcut much faster. From 5.5 million to 5 million years ago, headward erosion to the north and east consolidated these streams into one major river and associated tributary channels.[59] This river, the ancestral Lower Colorado River, started to fill the northern arm of the gulf, which extended nearly to the site of Hoover Dam, with estuary deposits.[57]
A grayish-colored river with some green vegetation on its banks but small compared to the high reddish and tan walls of the canyon it is in.
The Colorado River had cut down to nearly the current depth of the Grand Canyon by 1.2 million years ago.
At the same time, streams flowed from highlands in central Arizona north and across what is today the western Grand Canyon, possibly feeding a larger river.[60] The mechanism by which the ancestral Lower Colorado River captured this drainage and the drainage from much of the rest of the Colorado Plateau is not known. Possible explanations include headward erosion or a broken natural dam of a lake or river.[60] Whatever the cause, the Lower Colorado likely captured the landlocked Upper Colorado somewhere west of the Kaibab Uplift.[59] The much larger drainage area and yet steeper stream gradient helped to further accelerate downcutting.
Ice ages during the Pleistocene brought a cooler and wetter pluvial climate to the region starting 2 to 3 million years ago.[61] The added precipitation increased runoff and the erosive ability of streams (especially from spring melt water and flash floods in summer).[note 3] With a greatly increased flow volume the Colorado cut faster than ever before and started to quickly excavate the Grand Canyon 2 million years before present, almost reaching the modern depth by 1.2 million years ago.[62]
The resulting Grand Canyon of the Colorado River trends roughly east to west for 278 miles (447 km) between Lake Powell and Lake Mead.[63] In that distance, the Colorado River drops 2,000 feet (610 m) and has excavated an estimated 1,000 cubic miles (4,200 km3) of sediment to form the canyon.[64] This part of the river bisects the 9,000-foot (2,700 m)-high Kaibab Uplift[65] and passes seven plateaus (the Kaibab, Kanab, and Shivwits plateaus bound the northern part of the canyon and the Coconino bounds the southern part).[63] Each of these plateaus are bounded by north to south trending faults and monoclines created or reactivated during the Laramide orogeny. Streams flowing into the Colorado River have since exploited these faults to excavate their own tributary canyons, such as Bright Angel Canyon.[note 4]
[edit] Volcanic activity dams the new canyon
Dark-colored mass of rock draped over the side of a canyon
Vulcan's Throne volcano above Lava Falls. Lava flows, such as this heavily eroded remnant, once dammed the Colorado River.
Volcanic activity started in Uinkaret volcanic field (in western Grand Canyon) about 3 million years ago.[66] Over 150 flows of basaltic lava [67] dammed the Colorado River at least 13 times from 725,000 to 100,000 years ago.[68] The dams typically formed in weeks, were 12 to 86 miles (19 to 138 km) long, 150 to 2,000 feet (46 to 610 m) high (thicker upstream and thinner downstream) and had volumes of 0.03 to 1.2 cubic miles (0.13 to 5.0 km3).[69]
The longevity of the dams and their ability to hold Colorado River water in large lakes has been debated. In one hypothesis water from the Colorado River backed up behind the dams in large lakes that extended as far as Moab, Utah.[70] Dams that were 150 to 400 feet (46 to 120 m) high were overtopped by their lakes in 2 to 17 days while dams 200 to 1,000 feet (61 to 300 m) high were overtopped in 22 years.[71] At the same time, sediment filled the lakes behind the dams. Sediment would fill a lake behind a 150-foot (46 m)-high dam in 10.33 months, filled a lake behind an 1,150-foot (350 m)-high dam in 345 years, and filled the lake behind the tallest dam in 3000 years.[71] Cascades of water flowed over a dam while waterfalls migrated up-river along it. Most lava dams lasted for around 10,000 to 20,000 years.[72] However others have proposed that the lava dams were much more ephemeral and failed catastrophically before overtopping.[73] In this model dams would fail due to fluid flow through fractures in the dams and around dam abutments, through permeable river deposits and alluvium.
Since the demise of these dams the Colorado River has carved a maximum of about 160 feet (49 m) into the rocks of the Colorado Plateau [68]
[edit] Ongoing geology and human impact
Historic rockfall on the north rim.
The end of the Pleistocene ice ages and the start of the Holocene began to change the area's climate from a cool, wet pluvial one to dryer semi-arid conditions similar to that of today. With less water to cut, the erosive ability of the Colorado was greatly reduced. Mass wasting processes thus began to become relatively more important than they were before. Steeper cliffs and further widening the Grand Canyon and its tributary canyon system occurred. An average of two debris flows per year reach the Colorado River from tributary canyons to form or expand rapids.[74] This type of mass wasting is the main way the smaller and steeper side canyons transport sediment but it also plays a major role in excavating the larger canyons.[74]
An almost white dam stretches to red-colored rock on each side. An arching steel bridge crosses in front of the dam.
Glen Canyon Dam has greatly reduced the amount of sediment transported by the Colorado River through the Grand Canyon.
In 1963 Glen Canyon Dam and other dams farther upstream started to regulate the flow of the Colorado River through Grand Canyon. Pre-dam but still historic flows of the Colorado through Grand Canyon ranged from 700 to 100,000 cubic feet (20 to 2,800 m3) per second with at least one late 19th century flood of 300,000 cubic feet (8,500 m3) per second.[64] Discharge from Glen Canyon Dam exceeds 48,200 cubic feet (1,360 m3) per second only when there is danger of overtopping the dam or when the level of Lake Powell otherwise needs to be lowered.[75] An interim conservation measure since 1991 has held maximum flows at 20,000 cubic feet (570 m3) per second even though the dam's power plant can handle 13,200 cubic feet (370 m3) per second more flow.[76]
Controlling river flow by use of dams has diminished the river's ability to scour rocks by substantially reducing the amount of sediment it carries.[76] Dams on the Colorado River have also changed the character of the river water. Once both muddy and warm, the river is now clear and averages a 46 °F (8 °C) temperature year-round.[76] Experimental floods approaching the 48,200 cubic feet (1,360 m3) per second level mentioned above have been carried out in 1996 and 2004 to study the effects on sediment erosion and deposition.[77]
Grand Canyon lies on the southern end of the Intermountain West seismic belt[78] At least 35 earthquakes larger than 3.0 on the Richter Scale occurred in the Grand Canyon region in the 20th century.[79] Of these, five registered over 5.0 on the Richter Scale and the largest was a 6.2 quake that occurred in January 1906.[79] Major roughly north—south trending faults that cross the canyon are (from west to east), the Grand Wash, Hurricane and Toroweap.[80] Major northeast-trending fracture systems of normal faults that intersect the canyon include the West Kaibab and Bright Angel while northwest-trending systems include the Grandview—Phantom.[81] Most earthquakes in the region occur in a narrow northwest-trending band between the Mesa Butte and West Kaibab fracture systems.[82] These events are likely the result of eastward-migrating crustal stretching that may eventually move past the Grand Canyon area.[82]
[edit] Notes and timeline
Timeline (millions of years)
^ A geologic formation is a rock unit that has one or more sediment beds, and a member is a minor unit in a formation. Groups are sets of formations that are related in significant ways, and a supergroup is a sequence of vertically related groups and lone formations.
^ An exception is the slight effect that uplifts, upwarps and swells created by earlier phases of the Laramide orogeny have. For example, formations exposed on the South Rim are 800 feet (240 m) lower than the same formations on the North Rim because the North Rim is closer to the highest part of the Kaibab Uplift.(Foos 1999, p. 1)
^ Increased precipitation also allowed evergreen forests, in modern times limited to an elevation of 7,000 feet (2,100 m), to extend well into the canyon.(Price 1999, p. 42)
^ The Grand Canyon region gently slopes southward, so water on the North Rim flows into the canyon and water on the South Rim tends to flow away. Tributary canyons are therefore larger north of Grand Canyon and smaller south of it. Grand Canyon Village on the South Rim is located 2 miles (3.2 km) from the Colorado River and 4,460 feet (1,360 m) above it while Bright Angel Point on the North Rim is located 7.75 miles (12.47 km) from the river and is 5,940 feet (1,810 m) above it.(Chronic 2004, p. 98)
[edit] References
^ Beus & Morales 2003, p. 19
^ Harris 1997, p. 18
^ a b c d Kiver 1999, p. 398
^ a b Chronic 2004, p. 100
^ a b c d Price 1999, p. 23
^ Beus & Morales 2003, p. 24
^ Tufts 1998, p. 10
^ a b c Chronic 2004, p. 101
^ a b c d e f g h Harris 1997, p. 22
^ a b c d e f g h i NPS Contributors. "There’s Only One Grand Canyon" (PDF). National Park Service. http://www.nps.gov/grca/photosmultimedia/upload/geologyfaq.pdf. Retrieved 2009-09-13.
^ a b Price 1999, p. 24
^ Harris 1997, p. 19
^ Beus & Morales 2003, p. 45
^ Beus & Morales 2003, p. 47
^ Beus & Morales 2003, p. 55
^ Beus & Morales 2003, p. 56
^ Beus & Morales 2003, p. 75
^ Beus & Morales 2003, p. 61
^ Beus & Morales 2003, p. 63
^ Beus & Morales 2003, p. 65
^ Harris 1997, p. 11
^ Kiver 1999, p. 399
^ a b Kiver 1999, p. 400
^ Price 1999, p. 28
^ a b Kiver 1999, p. 401
^ Beus & Morales 2003, pp. 93–94
^ Beus & Morales 2003, p. 94
^ Price 1999, p. 50
^ a b Kaibab.org, "Grand Canyon Rock Layers"
^ a b Beus & Morales 2003, p. 96
^ a b c d e f g h i j k l Harris 1997, p. 23
^ a b c d Kiver 1999, p. 402
^ Price 1999, p. 29
^ Price 1999, p. 30
^ Beus & Morales 2003, p. 116
^ a b c Price 1999, p. 31
^ Beus & Morales 2003, p. 124
^ a b c d Price 1999, p. 32
^ Chronic 2004, p. 102
^ a b c d e f Harris 1997, p. 24
^ Beus & Morales 2003, p. 138
^ Beus & Morales 2003, p. 140
^ Beus & Morales 2003, p. 143
^ Beus & Morales 2003, p. 145
^ Beus & Morales 2003, p. 147
^ Price 1999, p. 33
^ Beus & Morales 2003, p. 164
^ a b Chronic 2004, p. 103
^ Beus & Morales 2003, pp. 181–184
^ Beus & Morales 2003, p. 198
^ a b c Kiver 1999, p. 405
^ Harris 1997, p. 25
^ Kiver 1999, p. 405
^ Price 1999, p. 36
^ a b Price 1999, p. 39
^ Price 1999, p. 47
^ a b c d e f Chronic 2004, p. 104
^ Beus & Morales 2003, p. 223
^ a b Price 1999, p. 58
^ a b Chronic 2004, p. 105
^ Harris 1997, p. 27
^ Kiver 1999, p. 407
^ a b Kiver 1999, p. 395
^ a b Price 1999, p. 54
^ Chronic 2004, p. 98
^ Price 1999, p. 40
^ Beus & Morales 2003, p. 313
^ a b Karlstrom, K., Crow, R., Peters, L., McIntosh, W., Raucci, J., Crossey, L., and Umhoefer, P., 2007, 40Ar/39Ar and field studies of Quaternary basalts in Grand Canyon and model for carving Grand Canyon: Quantifying the interaction of river incision and normal faulting across the western edge of the Colorado Plateau: GSA Bulletin, v. 119, no. 11/12, p. 1283-1312.
^ Beus & Morales 2003, pp. 317–319
^ Price 1999, p. 41
^ a b Beus & Morales 2003, p. 321
^ Beus & Morales 2003, p. 324
^ Fenton, C.R., Poreda, R.J., Nash, B.P., Webb, R.H., and Cerling, T.E., 2004, Geochemical discrimination of five Pleistocene lava-dam outburst-flood deposits, western Grand Canyon, Arizona: The Journal of Geology, v. 112, p. 91–110, doi: 10.1086/379694.
^ a b Price 1999, p. 57
^ Torresan, Laura Zink. "Grand Canyon Studies: Glen Canyon Dam". United States Geological Survey. http://walrus.wr.usgs.gov/grandcan/dam.html. Retrieved 2009-08-30.
^ a b c Torresan, Laura Zink. "Effects of Glen Canyon Dam on Water in the Colorado River". United States Geological Survey. http://walrus.wr.usgs.gov/grandcan/watereffects.html. Retrieved 2009-08-30.
^ Torresan, Laura Zink. "Controlled Flood". United States Geological Survey. http://walrus.wr.usgs.gov/grandcan/flood.html. Retrieved 2009-08-30.
^ Beus & Morales 2003, p. 346
^ a b Beus & Morales 2003, p. 348
^ Beus & Morales 2003, p. 349
^ Beus & Morales 2003, pp. 349–350
^ a b Beus & Morales 2003, p. 351
[edit] Bibliography
Beus, Stanely S.; Morales, Michael, eds (2003). Grand Canyon Geology (2nd ed.). New York, Oxford: Oxford University Press. ISBN 0-19-512299-2.
Bronze, Black (2003). The Colorado River Super Guide Map of the Grand Canyon. Flagstaff, Arizona: Dragon Creek Publishing.
Chronic, Halka (2004). Pages of Stone: Geology of the Grand Canyon and Plateau Country National Parks and Monuments (2nd ed.). The Mountaineers Books. ISBN 0-89886-680-4. http://books.google.com/?id=zzEvTydPU8QC.
Foos, Annabelle (1999) (PDF). Geology of Grand Canyon National Park, North Rim. http://www2.nature.nps.gov/geology/education/foos/grand.pdf. Retrieved 2008-08-11.
Harris, Ann G.; Tuttle, Esther; Tuttle, Sherwood D. (1997). Geology of National Parks (5th ed.). Iowa: Kendall/Hunt Publishing. ISBN 0-7872-5353-7.
Kiver, Eugene P.; Harris, David V. (1999). Geology of U.S. Parklands (5th ed.). New York: John Wiley & Sons. ISBN 0-471-33218-6.
Tufts, Lorraine Salem (1998). Secrets in The Grand Canyon, Zion and Bryce Canyon National Parks (3rd ed.). North Palm Beach, Florida: National Photographic Collections. ISBN 0-9620255-3-4.
Powell, James Lawrence (2005). Grand Canyon: Solving Earth's Grandest Puzzle. Pi Press. ISBN 0-13-147989-X.
Ribokas, Bob (2000). "Grand Canyon Rock Layers". Grand Canyon Explorer. http://www.bobspixels.com/kaibab.org/geology/gc_layer.htm. Retrieved 2005-03-20.
Price, L. Greer (1999). Geology of the Grand Canyon. Grand Canyon, Arizona: Grand Canyon Association. ISBN 0-938216-68-6.
Rudd, Connie (1990). Grand Canyon The Continuing Story. KC Publishing, Inc.. ISBN 0-88714-046-7.
[edit] External links
Grand Canyon National Park [1]
The Grand Age of Rocks: The Numeric Ages for Rocks Exposed within Grand Canyon
pbs.org: Geologic timelime for the Grand Canyon
Interactive Hypermedia on GC geology & Colin Fletcher's trek through the Canyon likened to a Bach fugue [shockwave required]
Categories:
Geology of Arizona
Grand Canyon
Regional geology of the United States
Anon5791
My talk
My preferences
My watchlist
My contributions
Log out
Article
Discussion
Read
Edit
View history
Watch
Main page
Contents
Featured content
Current events
Random article
Donate to Wikipedia
Interaction
Help
About Wikipedia
Community portal
Recent changes
Contact Wikipedia
Toolbox
Print/export
Languages
Deutsch
Italiano
This page was last modified on 24 December 2011 at 23:35.
Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. See Terms of use for details.
Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.
Contact us
Privacy policy
About Wikipedia
Disclaimers
Mobile view
Wikimedia Foundation
Powered by MediaWiki
=======================
Portal:Science
From Wikipedia, the free encyclopedia
Page semi-protected
For a topic outline on this subject, see Outline of science.
Wikipedia portals:
Culture
Geography
Health
History
Mathematics
Natural sciences
People
Philosophy
Religion
Society
Technology
Nuvola apps kalzium.svg Science: Astrolabe-Persian-18C.jpg History of science P philosophy.png Philosophy of science Complex-adaptive-system.jpg Systems science Nuvola apps edu mathematics-p.svg Mathematics EscherichiaColi NIAID.jpg Biology Nuvola apps edu science.svg Chemistry Stylised Lithium Atom.svg Physics Gnome-globe.svg Earth sciences Nuvola apps display.png Technology
Main page Categories & Main topics Portals & WikiProjects Things you can do
edit
The Science Portal
Meissner effect
Meissner effect
Science is a methodical study of nature. An older and closely related meaning still in use today is that found for example in Aristotle, whereby "science" refers to the body of reliable knowledge itself, of the type that can be logically and rationally explained (see "History and etymology" section below).
Since classical antiquity science as a type of knowledge was closely linked to philosophy. In the early modern era the two words, "science" and "philosophy", were sometimes used interchangeably in the English language. By the 17th century, "natural philosophy" (which is today called "natural science") had begun to be considered separately from "philosophy" in general. However, "science" continued to be used in a broad sense denoting reliable knowledge about a topic, in the same way it is still used in modern terms such as library science or political science.
In modern use, "science" is a term which more often refers to a way of pursuing knowledge, and not the knowledge itself. It is "often treated as synonymous with ‘natural and physical science’, and thus restricted to those branches of study that relate to the phenomena of the material universe and their laws, sometimes with implied exclusion of pure mathematics. This is now the dominant sense in ordinary use." This narrower sense of "science" developed as a part of science became a distinct enterprise of defining "laws of nature", based on early examples such as Kepler's laws, Galileo's laws, and Newton's laws of motion. In this period it became more common to refer to natural philosophy as "natural science". Over the course of the 19th century, the word "science" became increasingly associated with the disciplined study of the natural world including physics, chemistry, geology and biology. This sometimes left the study of human thought and society in a linguistic limbo, which was resolved by classifying these areas of academic study as social science. Similarly, several other major areas of disciplined study and knowledge exist today under the general rubric of "science", such as formal science and applied science.
More about Science...
View new selections below (purge)
edit
Selected article
The Grand Canyon from Navajo Point
The geology of the Grand Canyon area exposes one of the most complete sequences of rock anywhere, representing a period of nearly 2 billion years of the Earth's history in that part of North America. The major sedimentary rock layers exposed in the Grand Canyon and in the Grand Canyon National Park area range in age from 200 million to nearly 2 billion years old. Most were deposited in warm, shallow seas and near ancient, long-gone sea shores. Both marine and terrestrial sediments are represented, including fossilized sand dunes from an extinct desert.
Uplift of the region started about 75 million years ago in the Laramide orogeny, a mountain-building event that is largely responsible for creating the Rocky Mountains to the east. Accelerated uplift started 17 million years ago when the Colorado Plateaus (on which the area is located) were being formed. In total these layers were uplifted an estimated 10,000 feet (3000 m) which enabled the ancestral Colorado River to cut its channel into the four plateaus that constitute this area. But the canyon did not start to form until 5.3 million years ago when the Gulf of California opened up and thus lowered the river's base level (its lowest point) from that of large inland lakes to sea level.
...Archive/Nominations
Read more...
edit
Selected picture
A Persian astrolabe, used for determining the time at both day and night.
Credit: Andrew Dunn
An 18th Century Persian astrolabe used for determining the time at both day and night. The points of the curved spikes on the front rete plate, mark the positions of the brightest stars. The name of each star being labeled at the base of each spike. The back plate, or mater is engraved with projected coordinate lines. From the Whipple Museum of the History of Science collection.
...Archive/Nominations
Read more...
edit
Selected biography
Gregor Mendel (1822–1884) was an Austrian monk who is often called the "father of genetics" for his study of the inheritance of traits in pea plants. Mendel showed that there was particular inheritance of traits according to his laws of inheritance. The significance of Mendel's work was not recognized until the turn of the 20th century.
It was not until the early 20th century that the importance of his ideas was realized. In 1900, his work was rediscovered by Hugo de Vries, Carl Correns, and Erich von Tschermak. His results were quickly replicated, and genetic linkage quickly worked out. Biologists flocked to the theory, as while it was not yet applicable to many phenomena, it sought to give a genotypic understanding of heredity which they felt was lacking in previous studies of heredity which focused on phenotypic approaches.
...Archive/Nominations
Read more...
edit
Did you know...
Golden Lion Tamarin
...that the endangered golden lion tamarin (pictured) has a long, but not prehensile, tail?
...that the Witch's hat is the common name of a colourful orange-red toadstool?
...that Grandi's series 1 − 1 + 1 − 1 + • • • is divergent and appears to equal 0, yet in some sense "sums" to 1⁄2 — a paradox once linked to the creation ex nihilo of the universe?
...that Derek Freeman was an anthropologist whose refutation of Margaret Mead's work "ignited controversy of a scale, visibility, and ferocity never before seen in anthropology"?
...that the New Year's Eve snowstorm of 1963/1964 dropped over 17 inches of snow at Huntsville, Alabama, simultaneously setting new snowfall records for any day, week, or month in their history?
...Archive/Nominations
Read more...
edit
Associated Wikimedia
Science portal on Wikinews Science on Wikiquote Science subject on Wikibooks Science portal on Wikisource Science category on Wikicommons Science category on Wiktionary Wikiversity School of Science
News Quotations Manuals Texts Images Definitions Learning
Wikinews-logo.svg
Wikiquote-logo.svg
Wikibooks-logo.svg
Wikisource-logo.svg
Commons-logo.svg
Wiktionary-logo-en.svg
Wikiversity-logo.svg
What are portals? · List of portals · Featured portals
Purge server cache
This is a featured portal. Click here for more information.
Categories:
Science portal
Science
Anon5791
My talk
My preferences
My watchlist
My contributions
Log out
Portal
Discussion
Read
Edit
View history
Unwatch
Main page
Contents
Featured content
Current events
Random article
Donate to Wikipedia
Interaction
Help
About Wikipedia
Community portal
Recent changes
Contact Wikipedia
Toolbox
Print/export
Languages
العربية
বাংলা
Български
Català
Cebuano
Deutsch
ދިވެހިބަސް
Español
فارسی
Français
한국어
हिन्दी
ইমার ঠার/বিষ্ণুপ্রিয়া মণিপুরী
Bahasa Indonesia
Interlingua
Íslenska
Italiano
Kapampangan
ქართული
Latviešu
Limburgs
Македонски
Bahasa Melayu
မြန်မာဘာသာ
नेपाल भाषा
Nederlands
日本語
Norsk (bokmål)
Norsk (nynorsk)
Occitan
Polski
Português
Română
Runa Simi
Русский
සිංහල
Slovenščina
Suomi
Svenska
Taqbaylit
Татарча/Tatarça
ไทย
Тоҷикӣ
Türkçe
اردو
文言
Xitsonga
ייִדיש
粵語
中文
This page was last modified on 28 December 2011 at 10:38.
Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. See Terms of use for details.
Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.
Contact us
Privacy policy
About Wikipedia
Disclaimers
Mobile view
Wikimedia Foundation
Powered by MediaWiki
Well, I think my mind is still faster than the machine
ResponderEliminar